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E F F E C T  OF A P Y C N O C L I N E  

ON F O R C E S  E X E R T E D  B Y  I N T E R N A L  WAVES 

ON A S T A T I O N A R Y  C Y L I N D E R  

N. V.  Gavri lov and E. V .  E r m a n y u k  UDC 532.59 

Full-scale [1] and laboratory [2, 3] experiments show that internal waves can have a significant dynamic 
effect on underwater apparatus and marine structures. In the case of a sudden jump in density at the interface, 
the methods developed for surface waves are applicable to studies of forces acting on bodies in a fluid layer 
with a constant density. The problem of the roiling of a body located above (beneath) a pycnocline has been 
solved theoretically [4, 5]. If the dimensions of the body are small compared with the wavelength, the problem 
can be simplified [6]. A semi-empirical model of the force action of internal waves was proposed in [7]. 

Under the action of internal waves on bodies located in a zone with a varying density, a number of 
interesting dynamic effects occur. The possibility of mutual compensation of the hydrostatic and inertial 
components of wave loading was proved experimentally in [2] for three-dimensional bodies. The nonlinear 
effect of frequency doubling of the horizontal force for bodies located at the interface is shown in [3]. It should 
be noted that the presence of a layer with a continuously varying density results in the occurrence of complex 
diffraction effects due to energy redistribution among the different modes of wave motions of the fluid [8, 9]. 

This paper reports the results of measurements of the forces exerted by internal waves on an elliptic 
cylinder under stratification conditions with a large density-gradient layer (pycnocline). The wave loads are 
shown to be significantly dependent on the pycnocline thickness. It is found that  for a body immersed in a 
zone with a continuously varying density, there is a direction along which the force action of waves is maximal, 
and the force action perpendicular to this direction is smaller by a factor of 5-6. The effect is associated with 
the occurrence of additional diffraction loads. 

The experiments were performed in a hydrodynamic test tank (Fig. 1) 450 cm long, 20 cm wide, and 
60 cm high, in which nearly two-layer stratification was created. The upper layer consisted of distilled water 
with density pl = 0.999 g / cm 3, and the lower layer consisted of an aqueous solution of glycerin with density 
p2 = 1.011 g/cm 3. The waves in the pycnocline were generated by a half-cylinder 1, which accomplished 
harmonic oscillations along the end wall of the test tank. The opposite end of the test tank was equipped with 
a wave breaker 2 in the form of an inclined plate. The forces acting on an elliptic cylinder 3 with a length of 
19.8 cm were studied. The small axis of the cylinder was b = 3 cm, and the ratio of the axes was 2 : 1. The 
clearances between the ends of the cylinder and the side walls of the test tank did not exceed 0.1 cm. 

The measurements were performed by two-component balances 4 [3], whose minimum natural frequency 
with the cylinder suspended on them in water was 2.4 Hz. The maximum force frequency in the experiments did 
not exceed 0.21 Hz, and, therefore, the natural oscillations of the system did not influence the measured forces. 
A system of strings 5 and streamlined arms 6 transferred the forces to elastic elements 7. The deformations 
of the elastic elements were measured by induction displacement sensors. The maximum amplitude of wave 
loading was 1.1 �9 1 0  - 3  N. The elastic displacement of the elliptic cylinder under the action of this force did 
not exceed 5- 1 0  - 3  m m .  Special experiments showed that in wave-load measurements the error due to the 
presence of submerged elements of the balances was not more than 0.5%. 
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The internal-wave parameters were recorded by resistive-type wavemeters 8 of the type of [10]. The 
signals from the wavemeters and force sensors were processed on a computer. The density distribution along 
the vertical was measured by sensors with horizontally located electrodes, whose principle of operation is 
based on the fact that a mixture of water with glycerin is a conductor. With a small difference between 
the densities (as, e.g., in these experiments), the conductivity of the mixture is directly proportional to the 
glycerin concentration (i.e., to the density). Hence, the density profile can be readily obtained from the voltage 
measured by the sensor at various points along the vertical if the densities Px and p2 near the free surface and 
at the bottom are known. The densities were measured by standard areometers. The depth distribution of the 
density was measured prior to and after the experiments. Because of the smallness of the coefficient of glycerin 
diffusion in water, the distribution parameters were practically constant during one series of experiments. In 
the free-surface coordinate system (the z axis is directed upward, and the z axis is directed along the wave 
propagation), the density distribution established with time is close to the relation 

epa tanh 2(z + h) p2 -t- px p2 - pl (1) 
p ( z ) = p 0 - - y -  - - U - '  p 0 -  2 ' 

Pl 
where h = 14 cm is the depth of the upper fluid layer, and 6 is a parameter that characterizes the pycnocline 
thickness. The total fluid depth in the test tank was H = 45 cm. 

The wavemaker generates, strictly speaking, all modes of wave motion of the fluid. However, if the 
oscillations of the wavemaker have a small amplitude and the diameter of the oscillating half-cylinder is 
large compared with the pycnocline thickness, the higher modes are weakly generated and decay rapidly with 
distance from the perturbation source. The measurement zone was separated from the wavemaker by 180 cm. 
Observation of the wave motion showed that the perturbation was determined by the first mode. As is known, 
the first mode of wave motion of a two-layer fluid having a zone with a continuously varying density satisfies 
the dispersion relation [8] 

w 2 = r + cotanh kh  + cotanh k ( H  - h)),  (2) 

where k is the wavenumber, w is the wave frequency, and 3' is the typical width of the smeared zone. 
Measurements show that relation (2) approximates well the experimental results, provided that 3' = 6. 

The amplitude of first-mode oscillations was determined with correction for the data of the dynamic 
calibration of the wavemeters. For this, the vertical harmonic oscillations relative to the unperturbed interface 
were imparted to the wavemeters, and this modeled operation under perturbation conditions. The calibration 
results are shown in Fig. 2 as the curve of the dimensionless amplitude of the output signal and fi, = A / A o  

versus the frequency w for various ~, where A is the dynamic amplitude of the output signal, and A0 is a static 
amplitude that corresponds to the difference between the output signals measured for the extreme upper and 
lower positions of the wavemeters after the attenuation of the transient process. The value of ~ was determined 
from the measured density profile. The phase shift between the oscillations of the wavemeter and the output 
signal was practically absent. Such a strong dependence of the curves on ~ is indicative of the importance of 
dynamic calibration of wavemeters in measurements of internal-wave amplitudes using resistive sensors under 
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conditions of a continuously varying density as a function of depth. 
In the system described, the force action of the first internal-wave modes on the horizontal stationary 

elliptic cylinder is determined by the following dimensionless parameters: 

h/b, H/b, ~ = ho/b, 77=a/b, ~ = ~/b, k -- kb, fl = bCw/u. 
Here a is the ampli tude of internal waves (the vertical displacement of the fluid particles averaged over the 
pycnocline thickness; the error of measurements of a using wavemeters of the type of [10] did not exceed 7%), 
h0 is the distance from the free surface to the center of the cylinder, and u is the kinematic fluid viscosity. 
The values of the parameters h/b and H/b were fixed. 

Three variants of location of the body relative to the pycnocline were studied: in the middle of the 
upper layer for ~ = 2.0 and near the interface in the upper and lower layer for ~ = 3.5 and ~ = 5.4, respectively. 

For each submersion, the parameter  characterizing the pycnocline thickness varied within 0.45 < $ < 
2.5. The pycnocline thickness varied due to glycerin diffusion. The value 5 = 0.9 was reached 24 h after filling 
of the upper liquid layer [10]. For each pair of values of ~ and 5, the wave loads were measured as functions of 
incident-wave ampli tude and length. The corresponding typical parameters were varied within 0.1 < 7/< 0.4 
and 0.2 < [r < 1.1. 

It turned out that  for small values of 77 the wave loads are proportional to the wave amplitude within 
the measurement  error in all series of experiments. It is known that  if the amplitudes of particle motions are 
small compared with the dimensions of the body, the effect of the fluid viscosity is insignificant, and a change 
in the Stokes parameter  j3 has practically no effect on wave loads [11, 12]. A similar result was also obtained 
in the present work. The Stokes parameter  was varied within 20 < /3  < 30. Note that  the kinematic viscosity 
of the upper and lower fluid layers differed by not more than 10%. 

The amplitudes of wave loads were normalized to the scale of the inertial forces poSitz and poSity so 
that  

C, = Fx/poSit~, Cy = F~/poSit~, (3) 
where t~x and ~y are the amplitudes of the local accelerations of fluid particles at a depth corresponding to 
the center of the pycnocline; S is the cross-sectional area of the elliptic cylinder; F~ and Fy are the amplitudes 
of the horizontal and vertical forces acting on the cylinder with a unit  length. 

Use of the first-order theory [8] taking into account the dispersion relation (2) gives the following 
est imated amplitudes of the local accelerations: 

aw2 cosh k ho aw2sinh k ho 
/ ~* -  s inhkh  ' iLy -  s inhkh  for - h < z < O ,  

awecosh k( H - ho) a~v2sinh k( H - ho) 
5 ~ =  s i n h k ( H - h )  ' / t y=  s i n h k ( H - h )  for - H < z < - h .  

(4) 
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This normalization makes it possible to represent most simply the experimental data for a body located 
in a homogeneous fluid layer (see, e.g., [11, 13]). For a body located in the zone with a continuously varying 
density, the total force action is determined not only by inertial loads, but by the diffraction effects and the 
effect of the varying buoyancy. In this case, however, to divide the total experimentally measured force into 
components of various physical natures, one should employ additional hypotheses. Therefore, this work uses 
calibration (3) for all cases of body submersion. It should be noted that use of relations (4) for fluid particles 
located within the pycnocline gives overstated estimates which should be regarded, in this case, simply as 
normalization parameters. 

The results of measurements of forces acting on the elhptic cylinder located in the upper fluid layer for 
= 2 are given as curves of C,  and G'y versus the dimensionless wave number ~: for various 6, respectively, 

in Fig. 3a and 3b, For all values of $, the buoyancy has practically no influence. The results, however, show 
that even in this case, the force coefficients are significantly dependent on pycnocline thickness. 

In the case of a sudden density jump (g = 0.5) the total force coefficient is G'z "- 1.5 over a wide range 
of i ,  i.e., it is close to the theoretical coefficient of the inertial force for an elliptic cylinder with a ratio of 
the axes of 2 : 1 immersed in the flow of an infinite ideal fluid that executes translational oscillations along 
the large axis of the ellipse (for oscillations along the small axis of the ellipse, the corresponding coefficient 
is 3 [14]). The increase in Cr with an increase in increasing g is obviously due to the relative decrease in the 
thickness of the upper fluid layer with constant density and to the effect of flow contraction. 

The curve of C~ versus ~ is more complicated and nonmonotonic over some range of dimensionless 
wavenumbers Jr Attention is drawn to the linear curve Cy = 2 - 1.2fr in the case of a sudden density jump 
(~ = 0.5). It should be noted that  for all combinations of ~ and ~: the values of Cy are considerably smaller 
than 3. 

The phase shifts between pycnocline oscillations and the loads acting on the elliptic cylinder was 
104.9 ~ + 1.5 ~ and 201.2 ~ + 2.2 ~ for the horizontal and vertical forces, respectively. The effect of the parameter 
on the phase shifts in this series of experiments was not observed. When the elliptic cylinder is located near the 
pycnocline, the phase shifts were not measured, and the parameters of incident internal waves were recorded 
at a point 12 cm from the center of the cylinder. 

It can be assumed that  the character of the curves of Cx and Cy versus/r and 6 is due to the generation 
of the higher wave modes of fluid motion. The typical pattern of wave diffraction on the pycnocline in the case 
of a thin pycnocline (~ = 0.5) is given in Fig. 4a (the waves propagate from right to left). In the parameter 
range considered, the incident wave was represented by the first mode, and the effects of wave reflection were 
practically absent. The frequency of the incident wave was w = 0.745 rad/sec, and the wavelength was A = 56 
cm. Second-order waves are observed behind the body. These waves have a double oscillation frequency in 
comparison with the frequency of the incident waves. The main difference from similar effects observed for 
surface waves (see, e.g., [13, 15]) is that, by virtue of the dispersion relation (1), even for small $ the second- 
order waves A' have a very small length (in the above example, it is A' = 7.5 cm) and do not influence the 
forces acting on the body. Spectral analysis of the record of the force sensor performed on a computer showed 
that the amplitude of the second harmonics is negligible compared with the amplitude of the first harmonics 
(less than 2%). 

In addition, if the frequency of the incident waves ~ > Nm~x/2 (where Nmax is the maximum Brunt- 
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V~is~l~. frequency N(z) = ~/-gcgp/pOz), second-order progressive waves are not generated. This effect is 

illustrated in Fig. 4b and 4c (the interlayer boundaries are darkened) for 6 = 1.5 and Nma~ = 1.58 rad/sec. 
For this value of ~, second-mode wave oscillations can be generated. If w < 0.5Nmax, the wave pattern behind 
the body is the sum of the first- and second-mode oscillations, and also of second-order waves (Fig. 4b, 
w = 0.773 rad/sec, A = 44 cm, and A I = 6.5 cm). For w > 0.5Nmax, only first- and second-mode waves are 
observed behind the body (Fig. 4c, w = 0.83 rad/sec, A = 37 cm, and A2 = 11.5 cm is the length of the 
second mode). It should be noted that oscillations with a frequency of 0.5Nmax correspond to the wavelength 
A = 42 cm. 

In practice, because of the viscous dissipation of internal waves, the upper threshold of frequencies of 
the incident waves is limited w .~ 0.TNmax. This is responsible for narrowing of the studied range of k with 
an increase in ~. 

As the elliptical cylinder approaches the interface, the effect of the parameter 6 increases. The curves 
of C, and Cy versus fr and 6 for ~ = 3.5 (the body is in the upper layer near the interface) are shown, 
respectively, in Figs. 5a and 5b. 

For small values of 6, the effect of the varying buoyancy force was negligibly small, which allows one to 
compare the results of this series of experiments with the previous results obtained under similar conditions. 
Comparison of Figs. 3 and 5 shows that for ( = 3.5 the values of C,  and Cy somewhat increase for long waves 
(k < 0.5), and the linear curve of Cy versus fc is somewhat deviated. 

The curve of Cz versus 6 becomes nonmonotonic. With an increase in 6, the body is partially immersed 
in the pycnocline, and the amplitudes of the horizontal force increase under the action of incident long waves. 
This appears to be due to the occurrence of additional loads from wave impact on the body. The observed 
flow pattern of the type of slamming is shown in Fig. 6 (the waves propagate from right to left). For a more 
clear illustration, waves of large amplitude are shown. Upon wave impact, jet fluid flow forms, but, because 
of the small difference between the densities, the perturbation propagates almost horizontally. Near the end 
edge of the cylinder, a vortex forms which then separates and moves downward together with the wave (Fig. 
6b). From the left of the cylinder, second-order perturbations are clearly seen. With a further increase in 
pycnocline thickness, the cylinder turns out to be completely submerged in the zone with a continuously 
varying density, and the coefficient of the horizontal force C, again decreases. 

The vertical wave loads decrease with an increase in ~. This is due to the fact that  the inertial forces 
and the buoyancy forces act in counterphase, and their mutual  compensation is possible [7]. Introducing the 
hypothesis that the density distribution does not change with internal-wave passage and can be considered 
linear near the body, one can easily show that the ratio of the inertial forces and buoyancy forces is determined 
by the parameter a = r which has the physical meaning of Froude's number. For a < 1, buoyancy 
forces dominate, and for a > 1, inertial forces (for a homogeneous fluid, a ~ oc). An increase in Cy with 
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increasing pycnocline thickness for small values of ~: is a peculiarity of the chosen normalization (3) and (4), 
since for long waves the relative role of buoyancy forces increases. 

The curves of C~ and Cy for the body located beneath the pycnocline ((  = 5.4) are given in Figs. 
7a and 7b. A distinguishing feature of this case is that over the studied range of wavelengths the lower fluid 
layer can be considered infinitely deep [k(H - h) > 3]. Comparison of Figs. 5 and 7 shows that for small 
values of $ the coefficients Cz and Cy for the body beneath the pycnocline are considerably smaller than the 
corresponding coefficients for the body above the pycnocline. And the subsequent effect of the parameter of 
on Cz and Cy is also very significant. The greatest wave loads take place when the elliptic cylinder is partially 
immersed in the pycnocline. In this case, phenomena such as emergence of the body from water are observed, 
and the vertical and horizontal forces increase by a factor of 1.5. A further increase in the pycnocline thickness 
leads to a marked decrease in the wave loads. However, in both cases of body location near the pycnocline. 
no complete compensation of the vertical forces was observed, although the parameter  a was varied within 
0.1 < a < oo. With an increase in pycnocline thickness, the amplitude of the vertical forces decreases roughly 
by a factor of 2. 

The change in the character of the force action of internal waves with increasing 6 can be illustrated 
by hodographs of the total force vector, which are shown in Fig. 8 for the cylinder located above (a) and 
beneath (b) the pycnocline. The shape of the curves is of greatest interest, and, therefore, the length of the 
force vector R in each experiment was normalized to the amplitude of the horizontal force F~ (~'z,y = R~,y/F~ 
are plotted along the axes, and the arrows show the path direction). For small values of $ the hodographs of 
the force vector are curves close to an ellipse. In Fig. 8a, $ = 1.3 and ~: = 0.6, and in Fig. 8b, 6 = 0.4 and 
k = 0.29 (points 1 and the dashed curves). As 6 increases, a clearly distinct direction appears, along which 
the resulting force action is maximal. In Fig. 8a, $ = 2.2 and k = 0.58, and in Fig. 8b, 6 = 1.6 and/r = 0.28 
(points 2 and solid curves). In the experiments this direction differed from the horizontal direction by an angle 
of up to 45 ~ The amplitudes of the forces acting perpendicular to this direction were smaller by a factor of 
5-6. The curves in Fig. 8 correspond to values of/r that differ by not more than 3.5% from one another. The 
experiments show that a change in the parameter/~ for a fixed value of ~ has a weak effect on the shape of 
the curves. 

The character of changes in the hodographs of the vector of the total force suggests that, under the 
action of internal waves of the first mode on a body located in a wide pycnocline, small-scale internal waves 
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such as those described by the "ray" theory are generated near the body [8, 16]. In this case, a peculiar 
"polarization" of the force action takes place, and the interlayer with a linear density distribution and the 
Brunt-V~is/i.1/t frequency close to Nrnax appears to make the greatest contribution to the choice of the direction 
of the maximum force action. The angle 0, which characterizes the line along which the force action is maximal, 
is defined by 0 = arcsin (w/Nm~x) for the hodographs obtained in the experiments. The choice of the sign of 
the angle depended on the direction of orbital motion of the fluid particles in each layer. Therefore, the cases 
of body location above and beneath the pycnocline turned out to be mirror-symmetrical, as is evident from 
comparison of Fig. 8a and 8b. 

It should be noted that the rotation of the total force vector, which coincides with the direction of 
orbital motion of the fluid particles in each layer, does not depend on $, although in one case (Fig. 8) vertical 
loads are determined by inertial forces (dashed curves and points 1), and in the other case by buoyancy forces 
(solid lines and points 2). 

The authors are grateful to I. V. Sturova for useful discussion of the results. 
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